82 research outputs found

    Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring

    Get PDF
    In this paper we address the following question: Can we approximately sample from a Bayesian posterior distribution if we are only allowed to touch a small mini-batch of data-items for every sample we generate?. An algorithm based on the Langevin equation with stochastic gradients (SGLD) was previously proposed to solve this, but its mixing rate was slow. By leveraging the Bayesian Central Limit Theorem, we extend the SGLD algorithm so that at high mixing rates it will sample from a normal approximation of the posterior, while for slow mixing rates it will mimic the behavior of SGLD with a pre-conditioner matrix. As a bonus, the proposed algorithm is reminiscent of Fisher scoring (with stochastic gradients) and as such an efficient optimizer during burn-in.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Denoising Criterion for Variational Auto-Encoding Framework

    Full text link
    Denoising autoencoders (DAE) are trained to reconstruct their clean inputs with noise injected at the input level, while variational autoencoders (VAE) are trained with noise injected in their stochastic hidden layer, with a regularizer that encourages this noise injection. In this paper, we show that injecting noise both in input and in the stochastic hidden layer can be advantageous and we propose a modified variational lower bound as an improved objective function in this setup. When input is corrupted, then the standard VAE lower bound involves marginalizing the encoder conditional distribution over the input noise, which makes the training criterion intractable. Instead, we propose a modified training criterion which corresponds to a tractable bound when input is corrupted. Experimentally, we find that the proposed denoising variational autoencoder (DVAE) yields better average log-likelihood than the VAE and the importance weighted autoencoder on the MNIST and Frey Face datasets.Comment: ICLR conference submissio

    Neural Block-Slot Representations

    Full text link
    In this paper, we propose a novel object-centric representation, called Block-Slot Representation. Unlike the conventional slot representation, the Block-Slot Representation provides concept-level disentanglement within a slot. A block-slot is constructed by composing a set of modular concept representations, called blocks, generated from a learned memory of abstract concept prototypes. We call this block-slot construction process Block-Slot Attention. Block-Slot Attention facilitates the emergence of abstract concept blocks within a slot such as color, position, and texture, without any supervision. This brings the benefits of disentanglement into slots and the representation becomes more interpretable. Similar to Slot Attention, this mechanism can be used as a drop-in module in any arbitrary neural architecture. In experiments, we show that our model disentangles object properties significantly better than the previous methods, including complex textured scenes. We also demonstrate the ability to compose novel scenes by composing slots at the block-level

    Object-Centric Slot Diffusion

    Full text link
    The recent success of transformer-based image generative models in object-centric learning highlights the importance of powerful image generators for handling complex scenes. However, despite the high expressiveness of diffusion models in image generation, their integration into object-centric learning remains largely unexplored in this domain. In this paper, we explore the feasibility and potential of integrating diffusion models into object-centric learning and investigate the pros and cons of this approach. We introduce Latent Slot Diffusion (LSD), a novel model that serves dual purposes: it is the first object-centric learning model to replace conventional slot decoders with a latent diffusion model conditioned on object slots, and it is also the first unsupervised compositional conditional diffusion model that operates without the need for supervised annotations like text. Through experiments on various object-centric tasks, including the first application of the FFHQ dataset in this field, we demonstrate that LSD significantly outperforms state-of-the-art transformer-based decoders, particularly in more complex scenes, and exhibits superior unsupervised compositional generation quality. Project page is available at $\href{https://latentslotdiffusion.github.io}{here}

    Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus

    Full text link
    Over the past decade, large-scale supervised learning corpora have enabled machine learning researchers to make substantial advances. However, to this date, there are no large-scale question-answer corpora available. In this paper we present the 30M Factoid Question-Answer Corpus, an enormous question answer pair corpus produced by applying a novel neural network architecture on the knowledge base Freebase to transduce facts into natural language questions. The produced question answer pairs are evaluated both by human evaluators and using automatic evaluation metrics, including well-established machine translation and sentence similarity metrics. Across all evaluation criteria the question-generation model outperforms the competing template-based baseline. Furthermore, when presented to human evaluators, the generated questions appear comparable in quality to real human-generated questions.Comment: 13 pages, 1 figure, 7 table
    • …
    corecore